Datacentric Similarity Matching of Emergent Stigmergic Clustering to Fractional Factorial Vectoring: A Case for Leaner-and-Greener Wastewater Recycling

Author:

Besseris George1

Affiliation:

1. Department of Mechanical Engineering, The University of West Attica, 12241 Egaleo, Greece

Abstract

Water scarcity is a challenging global risk. Urban wastewater treatment technologies, which utilize processes based on single-stage ultrafiltration (UF) or nanofiltration (NF), have the potential to offer lean-and-green cost-effective solutions. Robustifying the effectiveness of water treatment is a complex multidimensional characteristic problem. In this study, a non-linear Taguchi-type orthogonal-array (OA) sampler is enriched with an emergent stigmergic clustering procedure to conduct the screening/optimization of multiple UF/NF aquametric performance metrics. The stochastic solver employs the Databionic swarm intelligence routine to classify the resulting multi-response dataset. Next, a cluster separation measure, the Davies–Bouldin index, is used to evaluate input and output relationships. The self-organized bionic-classifier data-partition appropriateness is matched for signatures between the emergent stigmergic clustering memberships and the OA factorial vector sequences. To illustrate the proposed methodology, recently-published multi-response multifactorial L9(34) OA-planned experiments from two interesting UF-/NF-membrane processes are examined. In the study, seven UF-membrane process characteristics and six NF-membrane process characteristics are tested (1) in relationship to four controlling factors and (2) to synchronously evaluate individual factorial curvatures. The results are compared with other ordinary clustering methods and their performances are discussed. The unsupervised robust bionic prediction reveals that the permeate flux influences both the UF-/NF-membrane process performances. For the UF process and a three-cluster model, the Davies–Bouldin index was minimized at values of 1.89 and 1.27 for the centroid and medoid centrotypes, respectively. For the NF process and a two-cluster model, the Davies–Bouldin index was minimized for both centrotypes at values close to 0.4, which was fairly close to the self-validation value. The advantage of this proposed data-centric engineering scheme relies on its emergent and self-organized clustering capability, which retraces its appropriateness to the fractional factorial rigid structure and, hence, it may become useful for screening and optimizing small-data wastewater operating conditions.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference96 articles.

1. United Nations (2023, September 21). Sustainable Development Goals, Goal 6: Clean Water and Sanitation. Available online: https://www.undp.org/sustainable-development-goals/clean-water-and-sanitation.

2. Four billion people facing severe water scarcity;Mekonnen;Sci. Adv.,2016

3. The world’s road to water scarcity: Shortage and stress in the 20th century and pathways towards sustainability;Kummu;Sci. Rep.,2016

4. Water scarcity assessments in the past, present, and future;Liu;Earths Future,2017

5. (2014). Environmental Management-Water Footprint-Principles, Requirements and Guidelines (Standard No. ISO 14046).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3