Utilizing Multivariate Adaptive Regression Splines (MARS) for Precise Estimation of Soil Compaction Parameters

Author:

Abed Musaab Sabah1ORCID,Kadhim Firas Jawad1,Almusawi Jwad K.1ORCID,Imran Hamza2ORCID,Bernardo Luís Filipe Almeida3ORCID,Henedy Sadiq N.4

Affiliation:

1. Department of Civil Engineering, Faculty of Engineering, University of Misan, Amarah 62001, Iraq

2. Department of Environmental Science, College of Energy and Environmental Science, Alkarkh University of Science, Baghdad 10081, Iraq

3. Department of Civil Engineering and Architecture, GeoBioTec-UBI, University of Beira Interior, 6201-001 Covilhã, Portugal

4. Department of Civil Engineering, Mazaya University College, Nasiriyah City 64001, Iraq

Abstract

Traditional laboratory methods for estimating soil compaction parameters, such as the Proctor test, have been recognized as time-consuming and labor-intensive. Given the increasing need for the rapid and accurate estimation of soil compaction parameters for a range of geotechnical applications, the application of machine learning models offers a promising alternative. This study focuses on employing the multivariate adaptive regression splines (MARS) model algorithm, a machine learning method that presents a significant advantage over other models through generating human-understandable piecewise linear equations. The MARS model was trained and tested on a comprehensive dataset to predict essential soil compaction parameters, including optimum water content (wopt) and maximum dry density (ρdmax). The performance of the model was evaluated using coefficient of determination (R2) and root mean square error (RMSE) values. Remarkably, the MARS models showed excellent predictive ability with high R2 and low RMSE, MAE, and relative error values, indicating its robustness and reliability in predicting soil compaction parameters. Through rigorous five-fold cross-validation, the model’s predictions for wopt returned an RMSE of 1.948%, an R2 of 0.893, and an MAE of 1.498%. For ρdmax, the results showcased an RMSE of 0.064 Mg/m3, an R2 of 0.899, and an MAE of 0.050 Mg/m3. When evaluated on unseen data, the model’s performance for wopt prediction was marked with an MAE of 1.276%, RMSE of 1.577%, and R2 of 0.948. Similarly, for ρdmax, the predictions were characterized by an MAE of 0.047 Mg/m3, RMSE of 0.062 Mg/m3, and R2 of 0.919. The results also indicated that the MARS model outperformed previously developed machine learning models, suggesting its potential to replace conventional testing methods. The successful application of the MARS model could revolutionize the geotechnical field through providing quick and reliable predictions of soil compaction parameters, improving efficiency for construction projects. Lastly, a variable importance analysis was performed on the model to assess how input variables affect its outcomes. It was found that fine content (Cf) and plastic limit (PL) have the greatest impact on compaction parameters.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference66 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3