Switched Auto-Regressive Neural Control (S-ANC) for Energy Management of Hybrid Microgrids

Author:

Cavus Muhammed12ORCID,Ugurluoglu Yusuf Furkan13,Ayan Huseyin14,Allahham Adib5,Adhikari Kabita1,Giaouris Damian1

Affiliation:

1. School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK

2. The School of Engineering, Iskenderun Technical University, Iskenderun 31200, Turkey

3. Department of Mechanical Engineering, Necmettin Erbakan University, Konya 42080, Turkey

4. The School of Engineering, Istanbul University-Cerrahpasa, Istanbul 34320, Turkey

5. Faculty of Engineering and Environment, Northumbria University, Newcastle NE1 8ST, UK

Abstract

Switched model predictive control (S-MPC) and recurrent neural networks with long short-term memory (RNN-LSTM) are powerful control methods that have been extensively studied for the energy management of microgrids (MGs). These methods ease constraint satisfaction, computational demands, adaptability, and comprehensibility, but typically one method is chosen over the other. The S-MPC method dynamically selects optimal models and control strategies based on the system’s operating mode and performance objectives. On the other hand, integration of auto-regressive (AR) control with these powerful control methods improves the prediction accuracy and the adaptability of the system conditions. This paper compares the two control approaches and proposes a novel algorithm called switched auto-regressive neural control (S-ANC) that combines their respective strengths. Using a control formulation equivalent to S-MPC and the same controller model for learning, the results indicate that pure RNN-LSTM cannot provide constraint satisfaction. The novel S-ANC algorithm can satisfy constraints and deliver comparable performance to MPC, while enabling continuous learning. The results indicate that S-MPC optimization increases power flows within the MG, resulting in efficient utilization of energy resources. By merging the AR and LSTM, the model’s computational time decreased by nearly 47.2%. In addition, this study evaluated our predictive model’s accuracy: (i) the R-squared error was 0.951, indicating a strong predictive ability, and (ii) mean absolute error (MAE) and mean square error (MSE) values of 0.571 indicate accurate predictions, with minimal deviations from the actual values.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3