Evaluation of Dimensional Stability and Occlusal Wear of Additively and Subtractively Manufactured Resin-Based Crowns after Thermomechanical Aging

Author:

Güven Mehmet Esad1ORCID,Çakmak Gülce2,Dönmez Mustafa Borga23ORCID,Yilmaz Burak245

Affiliation:

1. Department of Prosthodontics, Faculty of Dentistry, Necmettin Erbakan University, 42090 Konya, Turkey

2. Department of Reconstructive Dentistry and Gerodontology, School of Dental Medicine, University of Bern, 3012 Bern, Switzerland

3. Department of Prosthodontics, Faculty of Dentistry, Istinye University, 34010 Istanbul, Turkey

4. Department of Restorative, Preventive, and Pediatric Dentistry, School of Dental Medicine, University of Bern, 3012 Bern, Switzerland

5. Division of Restorative and Prosthetic Dentistry, The Ohio State University, Columbus, OH 43210, USA

Abstract

The knowledge on the surface deviations and wear of recently introduced additively or subtractively manufactured materials indicated for definitive prosthesis is limited. The aim of this present study was to evaluate the external surface and mesiodistal width deviation and the occlusal surface wear of one additively manufactured composite resin (MS) and three subtractively manufactured resins (nanographene-reinforced polymethylmethacrylate (GR), conventional polymethylmethacrylate (PMMA), and reinforced composite resin (BC)) after thermomechanical aging. Molar-shaped crowns were fabricated in the tested materials and digitized with an intraoral scanner (CEREC Primescan; Dentsply Sirona, Bensheim, Germany). Each crown was subjected to thermomechanical aging and rescanned with the same scanner. A three-dimensional analysis software (Geomagic Control X v.2022.1; 3D Systems, Rock Hill, SC, USA) was used to calculate the deviations on the external surface, mesiodistal width, and wear on the occlusal surfaces of the tested crowns. Data were analyzed using one-way ANOVA and Tukey’s tests (α = 0.05). MS had higher external surface deviations than PMMA and GR (p ≤ 0.038) and higher mesiodistal width deviations than PMMA and BC (p = 0.004). BC and GR had higher volume loss than PMMA (p ≤ 0.002). The additively manufactured composite resin was more prone to deviations, while reinforced composite resin had lower wear resistance than most of the tested materials.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3