Semi-Supervised Seizure Prediction Model Combining Generative Adversarial Networks and Long Short-Term Memory Networks

Author:

Yang Xiaoli1,Liu Lipei1,Li Zhenwei1ORCID,Xia Yuxin1,Fan Zhipeng1,Zhou Jiayi1

Affiliation:

1. School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang 471023, China

Abstract

In recent years, significant progress has been made in seizure prediction using machine learning methods. However, fully supervised learning methods often rely on a large amount of labeled data, which can be costly and time-consuming. Unsupervised learning overcomes these drawbacks but can suffer from issues such as unstable training and reduced prediction accuracy. In this paper, we propose a semi-supervised seizure prediction model called WGAN-GP-Bi-LSTM. Specifically, we utilize the Wasserstein Generative Adversarial Network with Gradient Penalty (WGAN-GP) as the feature learning model, using the Earth Mover’s distance and gradient penalty to guide the unsupervised training process and train a high-order feature extractor. Meanwhile, we built a prediction model based on the Bidirectional Long Short-Term Memory Network (Bi-LSTM), which enhances seizure prediction performance by incorporating the high-order time-frequency features of the brain signals. An independent, publicly available dataset, CHB-MIT, was applied to train and validate the model’s performance. The results showed that the model achieved an average AUC of 90.08%, an average sensitivity of 82.84%, and an average specificity of 85.97%. A comparison with previous research demonstrates that our proposed method outperforms traditional adversarial network models and optimizes unsupervised feature extraction for seizure prediction.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3