Efficiency of Flange-Bonded CFRP Sheets in Relocation of Plastic Hinge in RC Beam–Column Joints

Author:

Hejazi Farzad1,Azarm Ramin2,Firoozi Ali Akbar3

Affiliation:

1. School of Engineering, University of the West of England, Bristol BS16 1QY, UK

2. Department of Civil Engineering, University Putra Malaysia, Serdang 43400, Malaysia

3. Department of Civil Engineering, University of Botswana, Gaborone UB0061, Botswana

Abstract

Beam–column connection zones are high regions of interest in reinforced concrete (RC) structures, which are expected to respond elastically to seismic loads. Using carbon fiber-reinforced polymers (CFRP) to improve these connections, performance is critical in retrofitting deficient RC frames because existing slabs may pose numerous limitations in the design and wrapping of CFRP sheets in joints. The main aim of this research is to develop a new design for flange-bonded CFRP retrofit of frames, including slabs, for the relocation of plastic hinges of the connection area toward the beam and to develop beam–column joint capacity and building stability in cases of subjection to dynamic loads. The performance of these proposed retrofittings was explored both experimentally and numerically. Two full-scale fabricated interior RC joints of a real moment-resisting frame with moderate ductility were subjected to monotonic loads before and after retrofitting, and the results were used to detail the numerical progress and verify of the beam–column connection. Moreover, a parametric study was conducted on CFRP sheets’ optimal thickness to examine its influence on plastic hinge relocation in the connection region. Results show that the retrofitting method can efficiently relocate the plastic hinge to the mid-span of the beam, which, in turn, leads to improved capacity and achievement of the RC frame and guarantees better structural safety a lower cost.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3