Infiltration Grouting Mechanism of Bingham Fluids in Porous Media with Different Particle Size Distributions

Author:

Xu Baojie1,Zhang Hualei1ORCID,Yin Jiadi2,Xue Yonglin1ORCID

Affiliation:

1. School of Mining Engineering, Anhui University of Science and Technology, Huainan 232001, China

2. State Key Laboratory of Deep Geotechnics and Underground Engineering, China University of Mining and Technology, Xuzhou 221116, China

Abstract

Although permeation grouting technology has been widely used in engineering practice, there has not been sufficient research on how the distribution of pore sizes in porous media affects the diffusion of grout. In this study, based on the fractal theory of porous media and the Bingham fluid rheological equation, a Bingham fluid permeation grouting mechanism considering the distribution of pore sizes in porous media is proposed. The mechanism is validated through laboratory experiments and numerical simulations using COMSOL 6.0. During the experiments, parallel electrical resistance imaging is employed to monitor the diffusion range of the grout. Furthermore, the effects of grouting pressure, porosity, and water–cement ratio on the diffusion radius of the grout are analyzed. The results show that the Bingham fluid grout diffuses in a semi-spherical shape in the gravel. Additionally, parallel electrical resistance imaging can analyze the diffusion range of the grout in the gravel. The diffusion radius of the Bingham fluid grout in the gravel is smaller than the diffusion radius obtained by considering the particle size distribution theory, with an average difference of 31.8%. Compared to the diffusion radius obtained without considering the particle size distribution theory, the diffusion radius obtained by considering the distribution of pore sizes is closer to the experimental results. The numerically simulated program, which was developed for this study, can effectively simulate the diffusion law of the Bingham fluid in the gravel. So far, the Bingham fluid seepage grouting model considering the different particle size distribution of porous media has been built. The findings of this study can provide theoretical support and technical reference for practical grouting projects.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3