SliceSamp: A Promising Downsampling Alternative for Retaining Information in a Neural Network

Author:

He Lianlian1,Wang Ming2ORCID

Affiliation:

1. School of Mathematics and Statistics, Hubei University of Education, Wuhan 430205, China

2. School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, China

Abstract

Downsampling, which aims to improve computational efficiency by reducing the spatial resolution of feature maps, is a critical operation in neural networks. Many downsampling methods have been proposed to address the challenge of retaining feature map information. However, some detailed information is still lost, even though these methods can extract features with stronger semantics. In this paper, we propose a novel downsampling method which combines feature slicing and depthwise separable convolution for information-retaining downsampling. It slices the input feature map into multiple non-overlapping sub-feature maps by using indexes with a stride of two in the spatial dimension and applies depthwise separable convolution on each slice to extract feature information. To demonstrate the effectiveness of SliceSamp, we compare it with classical downsampling methods on image classification, object detection, and semantic segmentation tasks using several benchmark datasets, including ImageNet-1K, COCO, VOC, and ADE20K. Extensive experiments demonstrate that SliceSamp outperforms classical downsampling methods with consistent improvements in various computer vision tasks. The proposed SliceSamp shows advanced model performance with lower computational costs and memory requirements. By replacing the downsampling layers in different network architectures (including ResNet (Residual Network), YOLOv5, and Swin Transformer), SliceSamp brings different degrees of performance gains (+0.54~3.64%) compared to these baseline models. Additionally, SliceUpsamp enables high-resolution feature reconstruction and alignment during upsampling. SliceSamp and SliceUpsamp can be plug-and-play-integrated into existing neural network architectures. As a promising downsampling alternative to traditional methods, SliceSamp can also provide a reference for designing lightweight and high-performance model architectures in the future.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3