Experimental Studies on the Seismic Performance of Underwater Concrete Piers Strengthened by Self-Stressed Anti-Washout Concrete and Segments

Author:

Sun Yu12,Xu Wansong13,Shen Sheng1

Affiliation:

1. College of Civil Engineering, Fuzhou University, Fuzhou 350108, China

2. Shanghai Construction Decoration Engineering Group Co., Ltd., Shanghai 200040, China

3. East China Electric Power Design Institute Co., Ltd. of China Power Engineering Consulting Group, Shanghai 200333, China

Abstract

Given that the existing drainage strengthening methods for underwater damaged piers are expensive, inefficient, and cause shipping traffic disruptions, an urgent need exists to explore undrained strengthening methods, such as the precast concrete segment assembly method (PCSAM). However, the PCSAM has certain limitations, including a considerable strength loss of filled concrete, poor accuracy, poor connection performance of the segment sleeves, etc. Hence, this study developed an improved PCSAM (IPCSAM) by adopting self-stressed anti-washout concrete (SSAWC) as the filling material and developing a lining concrete segment sleeve (LCSS) based on the design principle of shield tunnel lining segments. Subsequently, the seismic performance of the strengthened piers was investigated. First, nine 1/5-scale pier column specimens were designed by considering different influencing factors: the self-stress of the SSAWC, LCSS reinforcement ratio, and initial damage and length–diameter ratio of the pier column. These specimens were tested under low reversed cyclic loading. Second, an extended parameter analysis was performed based on the established numerical models consistent with the quasi-static test’s parameter settings. Finally, a restoring force model of the strengthened piers, including the trilinear skeleton curve model and hysteresis curve model, was established based on the results of the quasi-static test and parameter analysis. The results indicated that the bearing capacity, ductility, and initial stiffness of the specimens strengthened using the IPCSAM increased by approximately 83.5–106.4%, 16.3–50.2%, and 83.9–177.3%, respectively, with the energy dissipation capacity also significantly improved. The self-stress of the SSAWC should not exceed 2.2 MPa, and the recommended ratio of the LCSS thickness to pier column diameter is 1/10. Additionally, the proposed restoring force model is highly accurate and applicable, able to provide a reference for the practical seismic strengthening design of piers.

Funder

National 13th Five-Year Research Program of China

Traffic Science and Technology Project of Fujian Communication Department

Education and Scientific Research Project for Young and Middle-aged Teachers of Fujian Province

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3