Sliding Mode Controller for Autonomous Tractor-Trailer Vehicle Reverse Path Tracking

Author:

Bin Salamah Yasser1ORCID

Affiliation:

1. Department of Electrical Engineering, King Saud Univeristy, Riyadh 11495, Saudi Arabia

Abstract

In the past few years, there has been a growing interest among researchers in developing control systems for autonomous vehicles, specifically for tractor-trailer systems. This newfound interest is driven by the potential benefits of enhancing safety, reducing costs, and addressing labor shortages in the industry. Two industries that could reap the rewards of these systems’ advancements are cargo and agriculture transportation. One of the challenging tasks for the truck trailer vehicle is driving in reverse. Backward path tracking of tractor-trailers is a complex control problem with practical applications. The difficulty in controlling the vehicle arises due to its unstable internal dynamics, coupled nonlinear terms, and the under-actuated nature of the system. There is also a limit to the angle at which the steering can be turned before the risk of a jackknife accident increases significantly. In response to these challenges, this paper introduces a robust sliding mode controller designed for path tracking in reverse-driving tractor-trailer systems. The novelty of our work lies in addressing these challenges, which have not been extensively studied in the past. The proposed controller is analyzed, and its performance is tested and verified using different scenarios. The simulation examples show superior control performance, and we anticipate that this novel controller holds the potential to be widely adopted as a fundamental component in the path-tracking algorithms of autonomous truck trailer systems.

Funder

King Saud University

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3