Mechanical Performance Prediction Model of Steel Bridge Deck Pavement System Based on XGBoost

Author:

Wei Yazhou1,Ji Rongqing1,Li Qingfu2,Song Zongming3ORCID

Affiliation:

1. Henan Puwei Expressway Company Limited, Puyang 457000, China

2. School of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou 450001, China

3. School of Civil Engineering, Wuhan University, Wuhan 430072, China

Abstract

Steel bridges are widely used in bridge engineering. In the structural design of steel bridge deck pavement systems, engineers focus on obtaining mechanical properties by calculating design parameters and are keen to establish a quick and accurate solution method. Because of the complex knowledge system involved in the numerical calculation method, it is difficult for the general engineering designer to master it. Researchers have started using artificial intelligence algorithms to solve problems in civil engineering. This study developed an XGBoost-based mechanical performance prediction model for steel bridge deck pavement systems. First, numerical simulation tests are conducted at unfavorable load locations using a finite element model to establish a dataset. Then, an XGBoost model is built using this dataset, and its parameters are optimized and compared with traditional machine learning models. Finally, an explanatory analysis of the model is performed using SHAP, an interpretable machine learning framework. The results indicate that the developed XGBoost model accurately predicts the mechanical properties of steel bridge deck pavement systems.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3