The Effect of Crowdsourced Police Enforcement Data on Traffic Speed: A Case Study of The Netherlands

Author:

Liu Yutian1,Feng Tao2ORCID

Affiliation:

1. Department of Built Environment, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands

2. Urban and Data Science Lab., Graduate School of Advanced Science and Engineering, Hiroshima University, Hiroshima 739-8529, Japan

Abstract

The proliferation of smartphones and internet connectivity has provided the opportunity to use crowdsourced data in traffic management. Nowadays, many people use navigation apps such as Google Maps, Waze, and Flitsmeister to obtain real-time travel information and provide feedback on road conditions, such as reporting police speed checks. As an accurate traffic speed prediction is of great significance for road users and traffic managers, different models have been proposed and widely used to predict traffic speed considering the spatio-temporal dependence of traffic data and external factors such as the weather, accidents and points of interest. This study investigates the impact of crowdsourced data about police enforcement from navigation apps on traffic speed. In addition, we examine whether the police enforcement report affects the accuracy of the deep learning prediction model. The authors extract crowdsourced police enforcement information from navigation apps, collect the corresponding historical traffic speed data, and predict traffic speed in several corridors in The Netherlands using a GCN-GRU traffic speed prediction model. The results show that the crowdsourced data for police enforcement cause the average vehicle speed to drop between 1 [km/h] and 3 [km/h] when passing the road segments marked with police activity. Moreover, the prediction performance of the GCN-GRU model during the periods without police enforcement is better than the periods with reported police activity, showing that police speed check reports can decrease the accuracy of speed prediction models.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3