The Performance of a Lip-Sync Imagery Model, New Combinations of Signals, a Supplemental Bond Graph Classifier, and Deep Formula Detection as an Extraction and Root Classifier for Electroencephalograms and Brain–Computer Interfaces

Author:

Naebi Ahmad1ORCID,Feng Zuren1

Affiliation:

1. State Key Laboratory for Manufacturing System Engineering, System Engineering Institute, Xi’an Jiaotong University, No. 28, Xianning West Road, Xi’an 710049, China

Abstract

Many current brain–computer interface (BCI) applications depend on the quick processing of brain signals. Most researchers strive to create new methods for future implementation and enhance existing models to discover an optimal feature set that can operate independently. This study focuses on four key concepts that will be used to complete future works. The first concept is related to potential future communication models, whereas the others aim to enhance previous models or methodologies. The four concepts are as follows. First, we suggest a new communication imagery model as a substitute for a speech imager that relies on a mental task approach. As speech imagery is intricate, one cannot imagine the sounds of every character in every language. Our study proposes a new mental task model for lip-sync imagery that can be employed in all languages. Any character in any language can be used with this mental task model. In this study, we utilized two lip-sync movements to indicate two sounds, characters, or letters. Second, we considered innovative hybrid signals. Choosing an unsuitable frequency range can lead to ineffective feature extractions. Therefore, the selection of an appropriate frequency range is crucial for processing. The ultimate goal of this method is to accurately discover distinct frequencies of brain imagery activities. The restricted frequency range combination presents an initial proposal for generating fragmented, continuous frequencies. The first model assesses two 4 Hz intervals as filter banks. The primary objective is to discover new combinations of signals at 8 Hz by selecting filter banks with a 4 Hz scale from the frequency range of 4 Hz to 40 Hz. This approach facilitates the acquisition of efficient and clearly defined features by reducing similar patterns and enhancing distinctive patterns of brain activity. Third, we introduce a new linear bond graph classifier as a supplement to a linear support vector machine (SVM) when handling noisy data. The performance of the linear support vector machine (SVM) significantly declines under high-noise conditions. To complement the linear support vector machine (SVM) in noisy-data situations, we introduce a new linear bond graph classifier. Fourth, this paper presents a deep-learning model for formula recognition that converts the first-layer data into a formula extraction model. The primary goal is to decrease the noise in the formula coefficients of the subsequent layers. The output of the final layer comprises coefficients chosen by different functions at various levels. The classifier then extracts the root interval for each formula, and a diagnosis is established based on these intervals. The final goal of the last idea is to explain the main brain imagery activity formula using a combination formula for similar and distinctive brain imagery activities. The results of implementing all of the proposed methods are reported. The results range between 55% and 98%. The lowest result is 55% for the deep detection formula, and the highest result is 98% for new combinations of signals.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3