Seamless Industry 4.0 Integration: A Multilayered Cyber-Security Framework for Resilient SCADA Deployments in CPPS

Author:

Wai Eric1ORCID,Lee C. K. M.12ORCID

Affiliation:

1. Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hong Kong, China

2. Research Institute of Advanced Manufacturing, The Hong Kong Polytechnic University, Hong Kong, China

Abstract

The increased connectivity and automation capabilities of Industry 4.0 cyber-physical production systems (CPPS) create significant cyber-security vulnerabilities in supervisory control and data acquisition (SCADA) environments if robust protections are not properly implemented. Legacy industrial control systems and new IP-enabled sensors, instruments, controllers, and appliances often lack basic safeguards like encryption, rigorous access controls, and endpoint security. This exposes manufacturers to substantial risks of cyberattacks that could manipulate, disrupt, or disable critical physical assets and processes related to their production lines and facilities. This study presents a multilayered cybersecurity framework to address these challenges and harden SCADA environments by implementing granular access controls, network micro-segmentation, anomaly detection, encrypted communications, and legacy system upgrades. The multilayered defense-in-depth (DID) approach combines policies, processes, and technologies to counter emerging vulnerabilities. The methodology was implemented in an electronics manufacturing facility across access control, zoning, monitoring, and encryption scenarios. Results show security improvements, including 57.4% fewer unauthorized access events, 41.2% faster threat containment, and 79.2% fewer hacking attempts. The quantified metrics highlight the CPPS resilience and threat mitigation capabilities enabled by the securely designed SCADA architecture, which allows manufacturers to confidently pursue Industry 4.0 integration and digital transformation with minimized disruption.

Funder

Research Institute for Advanced Manufacturing

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3