A Secret Key Classification Framework of Symmetric Encryption Algorithm Based on Deep Transfer Learning

Author:

Cui Xiaotong1ORCID,Zhang Hongxin12,Fang Xing1ORCID,Wang Yuanzhen3ORCID,Wang Danzhi1,Fan Fan4,Shu Lei4ORCID

Affiliation:

1. School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China

2. Beijing Key Laboratory of Work Safety Intelligent Monitoring, Beijing University of Posts and Telecommunications, Beijing 100876, China

3. School of Cyberspace Security, Beijing University of Posts and Telecommunications, Beijing 100876, China

4. Beijing Microelectronics Technology Institute, Beijing 100076, China

Abstract

The leakage signals, including electromagnetic, energy, time, and temperature, generated during the operation of password devices contain highly correlated key information, which leads to security vulnerabilities. In traditional encryption algorithms, the length of the key greatly affects the upper limit of its security against cracking. Regarding side-channel attacks on long-key algorithms, traditional template attack methods characterize the energy traces using multivariate Gaussian distribution during the template construction phase. The exhaustive key-guessing process is expected to consume a significant amount of time and computational resources. Therefore, to analyze the effectiveness of obtaining key values from the side information of password devices, we propose an innovative attack method based on a divide-and-conquer logical structure, targeting semi-bytes. We construct a collection of key classification submodules with symmetric correlations. By integrating a differential network model for byte-block sets and an end-to-end direct attack method, we form a holistic symmetric decision framework and propose a key classification structure based on deep transfer learning. This structure consists of three main parts: side information data acquisition, analysis of key-value effectiveness, and determination of attack positions. It employs multiple parallel symmetric subnetworks, effectively improving attack efficiency and reducing the key enumeration range. Experimental results show that the optimal attack accuracy of the network model can reach 91%, with an average attack accuracy of 78%. It overcomes overfitting issues under small sample dataset conditions.

Funder

National Natural Science Foundation of China

Aeronautical Science Foundation of China

BUPT innovation and entrepreneurship support program

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3