Experimental and Statistical Study on the Formation Characteristics and Discrimination Criteria of River Blockages Caused by Landslides

Author:

Zhuo Li1,Hu Yun-Feng1,Xiao Ming-Li1,Luo Yu2,Liu Huai-Zhong1ORCID,Xie Hong-Qiang1,Pei Jian-Liang1

Affiliation:

1. Laboratory of Hydraulics and Mountain River Engineering, College of Water Resources and Hydropower, Sichuan University, Chengdu 610065, China

2. Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China

Abstract

The discrimination of river blockages is very important for the risk assessment of landslide disasters and secondary hazards. Experimental studies and statistical analyses were carried out to explore the formation process and discriminant criteria of river blockages caused by landslides. An adjustable slide chute was designed and built to conduct forty-five landslide experiments. According to the experimental results, river blockage was identified as having six types based on the differences between the water depth and the height of the landslide dam, and the degree of river blockage increased from 70% to 100% as the chute angle, particle size, and landslide volume increased. It is also found that landslide volume controls the landslide dam height and degree of blockage, and particle size and slide angle control both the landslide velocity as it enters the river and the cross-section shape of the landslide dam. To investigate more influence factors, a statistical investigation of 60 real landslide cases was carried out, and it revealed that some geometric attributes related to landslide volume have the highest correlation with river blockage, especially landslide thickness. Finally, an improved probability model was proposed to assess the possibility of complete blockage, and it has overall accuracies of 91.1% and 83.3% when applied to predict experimental landslide cases and real landslide cases, respectively.

Funder

Chinese Academy of Sciences (CAS) program of the “Western Youth Scholar”

National Key R&D Program of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3