Time Fractional Fisher–KPP and Fitzhugh–Nagumo Equations

Author:

Angstmann Christopher N.ORCID,Henry Bruce I.

Abstract

A standard reaction–diffusion equation consists of two additive terms, a diffusion term and a reaction rate term. The latter term is obtained directly from a reaction rate equation which is itself derived from known reaction kinetics, together with modelling assumptions such as the law of mass action for well-mixed systems. In formulating a reaction–subdiffusion equation, it is not sufficient to know the reaction rate equation. It is also necessary to know details of the reaction kinetics, even in well-mixed systems where reactions are not diffusion limited. This is because, at a fundamental level, birth and death processes need to be dealt with differently in subdiffusive environments. While there has been some discussion of this in the published literature, few examples have been provided, and there are still very many papers being published with Caputo fractional time derivatives simply replacing first order time derivatives in reaction–diffusion equations. In this paper, we formulate clear examples of reaction–subdiffusion systems, based on; equal birth and death rate dynamics, Fisher–Kolmogorov, Petrovsky and Piskunov (Fisher–KPP) equation dynamics, and Fitzhugh–Nagumo equation dynamics. These examples illustrate how to incorporate considerations of reaction kinetics into fractional reaction–diffusion equations. We also show how the dynamics of a system with birth rates and death rates cancelling, in an otherwise subdiffusive environment, are governed by a mass-conserving tempered time fractional diffusion equation that is subdiffusive for short times but standard diffusion for long times.

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference43 articles.

1. Diffusion and ecological problems: Mathematical models;Okubo;Biomathematics,1980

2. Reaction-Diffusion Equations and Their Applications to Biology;Britton,1986

3. Mathematical Biology. II Spatial Models and Biomedical Applications;Murray,2003

4. Modeling and analysis of mass-action kinetics;Chellaboina;IEEE Control Syst.,2009

5. THE WAVE OF ADVANCE OF ADVANTAGEOUS GENES

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3