Quantifying Changes in Groundwater Storage and Response to Hydroclimatic Extremes in a Coastal Aquifer Using Remote Sensing and Ground-Based Measurements: The Texas Gulf Coast Aquifer

Author:

Gyawali BimalORCID,Murgulet DorinaORCID,Ahmed MohamedORCID

Abstract

With the increasing vulnerability of groundwater resources, especially in coastal regions, there is a growing need to monitor changes in groundwater storage (GWS). Estimations of GWS have been conducted extensively at regional to global scales using GRACE and GRACE-FO observations. The major goal of this study was to evaluate the applicability of uninterrupted monthly GRACE-derived terrestrial water storage (TWSGRACE) records in facilitating detection of long- and short-term hydroclimatic events affecting the GWS in a coastal area. The TWSGRACE data gap was filled with reconstructed values from multi-linear regression (MLR) and artificial neural network (ANN) models and used to estimate changes in GWS in the Texas coastal region (Gulf Coast and Carrizo–Wilcox Aquifers) between 2002 and 2019. The reconstructed TWSGRACE, along with soil moisture storage (SMS) from land surface models (LSMs), and surface water storage (SWS) were used to estimate the GRACE-derived GWS (GWSGRACE), validated against the GWS estimated from groundwater level observations (GWSwell) and extreme hydroclimatic event records. The results of this study show: (1) Good agreement between the predicted TWSGRACE data gaps from the MLR and ANN models with high accuracy of predictions; (2) good agreement between the GWSGRACE and GWSwell records (CC = 0.56, p-value < 0.01) for the 2011–2019 period for which continuous GWLwell data exists, thus validating the approach and increasing confidence in using the reconstructed TWSGRACE data to monitor coastal GWS; (3) a significant decline in the coastal GWSGRACE, at a rate of 0.35 ± 0.078 km3·yr−1 (p-value < 0.01), for the 2002–2019 period; and (4) the reliable applicability of GWSGRACE records in detecting multi-year drought and wet periods with good accuracy: Two drought periods were identified between 2005–2006 and 2010–2015, with significant respective depletion rates of −8.9 ± 0.95 km3·yr−1 and −2.67 ± 0.44 km3·yr−1 and one wet period between 2007 and 2010 with a significant increasing rate of 2.6 ± 0.63 km3·yr−1. Thus, this study provides a reliable approach to examine the long- and short-term trends in GWS in response to changing climate conditions with significant implications for water management practices and improved decision-making capabilities.

Funder

Texas Sea Grant College Program

Texas General Office, Coastal Management Program

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3