Abstract
Dust aerosols substantially impinge on the Earth’s climate by altering its energy balance, particularly over Northwest China, where dust storms occur frequently. However, the quantitative contributions of dust aerosols to direct radiative forcing (DRF) are not fully understood and warrant in-depth investigations. Taking a typical dust storm that happened during 9–12 April 2020 over Northwest China as an example, four simulation experiments based on the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) were designed, including a real scenario with dust emissions and three hypothetical scenarios without dust emissions, with dust emissions doubled, and with dust emissions reduced by half, to quantitatively evaluate the contributions of dust aerosols to DRF and then to surface temperature, with particular attention to the differences between daytime and nighttime. Moreover, multi-satellite observations were used to reveal the behavior of dust events and to evaluate the model performance. During the daytime, the net dust radiative forcing induced by dust aerosols was −3.76 W/m2 at the surface (SFC), 3.00 W/m2 in the atmosphere (ATM), and −0.76 W/m2 at the top of the atmosphere (TOA), and thus led to surface air temperature cooling by an average of −0.023 °C over Northwest China. During the nighttime, the net dust radiative forcing was 2.20 W/m2 at the SFC, −2.65 W/m2 in the ATM, and −0.45 W/m2 at the TOA, which then resulted in surface temperature warming by an average of 0.093 °C over Northwest China. These results highlight that the contribution of dust aerosols to DRF is greater during the daytime than that during the nighttime, while exhibiting the opposite impact on surface temperature, as dust can slow down the rate of surface temperature increases (decreases) by reducing (increasing) the surface energy during the daytime (nighttime). Our findings are critical to improving the understanding of the climate effects related to dust aerosols and provide scientific insights for coping with the corresponding disasters induced by dust storms in Northwest China.
Funder
The National Key Research and Development Program of China
Subject
General Earth and Planetary Sciences
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献