Quantitatively Assessing the Contributions of Dust Aerosols to Direct Radiative Forcing Based on Remote Sensing and Numerical Simulation

Author:

Wang JinyanORCID,Su Shixiang,Yin Zelun,Sun CaixiaORCID,Xie XiangshanORCID,Wang Tianyu,Yasheng Dilinuer,Chen Jinche,Zhang Xin,Yang YiORCID

Abstract

Dust aerosols substantially impinge on the Earth’s climate by altering its energy balance, particularly over Northwest China, where dust storms occur frequently. However, the quantitative contributions of dust aerosols to direct radiative forcing (DRF) are not fully understood and warrant in-depth investigations. Taking a typical dust storm that happened during 9–12 April 2020 over Northwest China as an example, four simulation experiments based on the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) were designed, including a real scenario with dust emissions and three hypothetical scenarios without dust emissions, with dust emissions doubled, and with dust emissions reduced by half, to quantitatively evaluate the contributions of dust aerosols to DRF and then to surface temperature, with particular attention to the differences between daytime and nighttime. Moreover, multi-satellite observations were used to reveal the behavior of dust events and to evaluate the model performance. During the daytime, the net dust radiative forcing induced by dust aerosols was −3.76 W/m2 at the surface (SFC), 3.00 W/m2 in the atmosphere (ATM), and −0.76 W/m2 at the top of the atmosphere (TOA), and thus led to surface air temperature cooling by an average of −0.023 °C over Northwest China. During the nighttime, the net dust radiative forcing was 2.20 W/m2 at the SFC, −2.65 W/m2 in the ATM, and −0.45 W/m2 at the TOA, which then resulted in surface temperature warming by an average of 0.093 °C over Northwest China. These results highlight that the contribution of dust aerosols to DRF is greater during the daytime than that during the nighttime, while exhibiting the opposite impact on surface temperature, as dust can slow down the rate of surface temperature increases (decreases) by reducing (increasing) the surface energy during the daytime (nighttime). Our findings are critical to improving the understanding of the climate effects related to dust aerosols and provide scientific insights for coping with the corresponding disasters induced by dust storms in Northwest China.

Funder

The National Key Research and Development Program of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3