Active Fire Mapping on Brazilian Pantanal Based on Deep Learning and CBERS 04A Imagery

Author:

Higa Leandro,Marcato Junior JoséORCID,Rodrigues ThiagoORCID,Zamboni Pedro,Silva RodrigoORCID,Almeida Laisa,Liesenberg VeraldoORCID,Roque Fábio,Libonati RenataORCID,Gonçalves Wesley NunesORCID,Silva Jonathan

Abstract

Fire in Brazilian Pantanal represents a serious threat to biodiversity. The Brazilian National Institute of Spatial Research (INPE) has a program named Queimadas, which estimated from January 2020 to October 2020, a burned area in Pantanal of approximately 40,606 km2. This program also provides daily data of active fire (fires spots) from a methodology that uses MODIS (Aqua and Terra) sensor data as reference satellites, which presents limitations mainly when dealing with small active fires. Remote sensing researches on active fire dynamics have contributed to wildfire comprehension, despite generally applying low spatial resolution data. Convolutional Neural Networks (CNN) associated with high- and medium-resolution remote sensing data may provide a complementary strategy to small active fire detection. We propose an approach based on object detection methods to map active fire in the Pantanal. In this approach, a post-processing strategy is adopted based on Non-Max Suppression (NMS) to reduce the number of highly overlapped detections. Extensive experiments were conducted, generating 150 models, as five-folds were considered. We generate a public dataset with 775-RGB image patches from the Wide Field Imager (WFI) sensor onboard the China Brazil Earth Resources Satellite (CBERS) 4A. The patches resulted from 49 images acquired from May to August 2020 and present a spatial and temporal resolutions of 55 m and five days, respectively. The proposed approach uses a point (active fire) to generate squared bounding boxes. Our findings indicate that accurate results were achieved, even considering recent images from 2021, showing the generalization capability of our models to complement other researches and wildfire databases such as the current program Queimadas in detecting active fire in this complex environment. The approach may be extended and evaluated in other environmental conditions worldwide where active fire detection is still a required information in fire fighting and rescue initiatives.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference50 articles.

1. Hydro-ecological processes and anthropogenic impacts on the ecosystem services of the Pantanal wetland;Calheiros,2012

2. Temporal variability in evapotranspiration and energy partitioning over a seasonally flooded scrub forest of the Brazilian Pantanal

3. Constituição da República Federativa do Brasil;do Brasil,1988

4. SEASONAL PANTANAL FLOOD PULSE: IMPLICATIONS FOR BIODIVERSITY CONSERVATION – A REVIEW

5. Biodiversity and its conservation in the Pantanal of Mato Grosso, Brazil

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3