Decision Fusion of Deep Learning and Shallow Learning for Marine Oil Spill Detection

Author:

Yang JunfangORCID,Ma Yi,Hu Yabin,Jiang Zongchen,Zhang Jie,Wan Jianhua,Li Zhongwei

Abstract

Marine oil spills are an emergency of great harm and have become a hot topic in marine environmental monitoring research. Optical remote sensing is an important means to monitor marine oil spills. Clouds, weather, and light control the amount of available data, which often limit feature characterization using a single classifier and therefore difficult to accurate monitoring of marine oil spills. In this paper, we develop a decision fusion algorithm to integrate deep learning methods and shallow learning methods based on multi-scale features for improving oil spill detection accuracy in the case of limited samples. Based on the multi-scale features after wavelet transform, two deep learning methods and two classical shallow learning algorithms are used to extract oil slick information from hyperspectral oil spill images. The decision fusion algorithm based on fuzzy membership degree is introduced to fuse multi-source oil spill information. The research shows that oil spill detection accuracy using the decision fusion algorithm is higher than that of the single detection algorithms. It is worth noting that oil spill detection accuracy is affected by different scale features. The decision fusion algorithm under the first-level scale features can further improve the accuracy of oil spill detection. The overall classification accuracy of the proposed method is 91.93%, which is 2.03%, 2.15%, 1.32%, and 0.43% higher than that of SVM, DBN, 1D-CNN, and MRF-CNN algorithms, respectively.

Funder

National Natural Science Foundation of China

China University of Petroleum, East China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3