A Real-Time Early Warning Seismic Event Detection Algorithm Using Smart Geo-Spatial Bi-Axial Inclinometer Nodes for Industry 4.0 Applications

Author:

Tariq Hasan,Touati Farid,E. Al-Hitmi Mohammed Abdulla,Crescini Damiano,Ben Mnaouer AdelORCID

Abstract

Earthquakes are one of the major natural calamities as well as a prime subject of interest for seismologists, state agencies, and ground motion instrumentation scientists. The real-time data analysis of multi-sensor instrumentation is a valuable knowledge repository for real-time early warning and trustworthy seismic events detection. In this work, an early warning in the first 1 micro-second and seismic wave detection in the first 1.7 milliseconds after event initialization is proposed using a seismic wave event detection algorithm (SWEDA). The SWEDA with nine low-computation-cost operations is being proposed for smart geospatial bi-axial inclinometer nodes (SGBINs) also utilized in structural health monitoring systems. SWEDA detects four types of seismic waves, i.e., primary (P) or compression, secondary (S) or shear, Love (L), and Rayleigh (R) waves using time and frequency domain parameters mapped on a 2D mapping interpretation scheme. The SWEDA proved automated heterogeneous surface adaptability, multi-clustered sensing, ubiquitous monitoring with dynamic Savitzky–Golay filtering and detection using nine optimized sequential and structured event characterization techniques. Furthermore, situation-conscious (context-aware) and automated computation of short-time average over long-time average (STA/LTA) triggering parameters by peak-detection and run-time scaling arrays with manual computation support were achieved.

Funder

Qatar National Research Fund

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference45 articles.

1. Impacts of Natural Disasters on Environmental and Socio-Economic Systems: What makes the difference?;Herlander;Ambiente Soc.,2013

2. The Challenge of Sustainable Development;Franco,1989

3. Toward Creating a Subsurface Camera;Wenzhan;Sensors,2019

4. Development of Integrated Earthquake Simulation System for Istanbul;Abdurrahman;Earth Planets Space,2016

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3