Abstract
This review addresses the effects of the modifications with nanomaterials, particularly nanosilica, nanoclays, and nanoiron, on the mechanical performance and aging resistance of asphalt mixtures. The desire for high-performance and long-lasting asphalt pavements significantly pushed the modification of the conventional paving asphalt binders. To cope with such demand, the use of nanomaterials for the asphalt binder modification seems promising, as with a small amount of modification an important enhancement of the asphalt mixture mechanical performance can be attained. Several studies already evaluated the effects of the modifications with nanomaterials, mostly focusing on the asphalt binder properties and rheology, and the positive findings encouraged the study of modified asphalt mixtures. This review focuses on the effects attained in the mechanical properties of the asphalt mixtures, under fresh and aged conditions. Generally, the effects of each nanomaterial were evaluated with the current state-of-art tests for the characterization of mechanical performance of asphalt mixtures, such as, permanent deformation, stiffness modulus, fatigue resistance, indirect tensile strength, and Marshall stability. Aging indicators, as the aging sensitivity, were used to evaluate the effects in the asphalt mixture’s aging resistance. Finally, to present a better insight into the economic feasibility of the analyzed nanomaterials, a simple cost analysis is performed.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Reference138 articles.
1. The Shell Bitumen Handbook;Hunter,2015
2. Seymour/Carraher’s Polymer Chemistry;Carraher,2003
3. Bitumen and Bitumen Modification: A Review on Latest Advances
Cited by
62 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献