A Review of Nanomaterials’ Effect on Mechanical Performance and Aging of Asphalt Mixtures

Author:

Crucho JoãoORCID,Picado-Santos LuísORCID,Neves JoséORCID,Capitão SilvinoORCID

Abstract

This review addresses the effects of the modifications with nanomaterials, particularly nanosilica, nanoclays, and nanoiron, on the mechanical performance and aging resistance of asphalt mixtures. The desire for high-performance and long-lasting asphalt pavements significantly pushed the modification of the conventional paving asphalt binders. To cope with such demand, the use of nanomaterials for the asphalt binder modification seems promising, as with a small amount of modification an important enhancement of the asphalt mixture mechanical performance can be attained. Several studies already evaluated the effects of the modifications with nanomaterials, mostly focusing on the asphalt binder properties and rheology, and the positive findings encouraged the study of modified asphalt mixtures. This review focuses on the effects attained in the mechanical properties of the asphalt mixtures, under fresh and aged conditions. Generally, the effects of each nanomaterial were evaluated with the current state-of-art tests for the characterization of mechanical performance of asphalt mixtures, such as, permanent deformation, stiffness modulus, fatigue resistance, indirect tensile strength, and Marshall stability. Aging indicators, as the aging sensitivity, were used to evaluate the effects in the asphalt mixture’s aging resistance. Finally, to present a better insight into the economic feasibility of the analyzed nanomaterials, a simple cost analysis is performed.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference138 articles.

1. The Shell Bitumen Handbook;Hunter,2015

2. Seymour/Carraher’s Polymer Chemistry;Carraher,2003

3. Bitumen and Bitumen Modification: A Review on Latest Advances

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3