Development of a Convolution-Based Multi-Directional and Parallel Ant Colony Algorithm Considering a Network with Dynamic Topology Changes

Author:

Oh EunseoORCID,Lee HyunsooORCID

Abstract

While network path generation has been one of the representative Non-deterministic Polynomial-time (NP)-hard problems, changes of network topology invalidate the effectiveness of the existing metaheuristic algorithms. This research proposes a new and efficient path generation framework that considers dynamic topology changes in a complex network. In order to overcome this issue, Multi-directional and Parallel Ant Colony Optimization (MPACO) is proposed. Ant agents are divided into several groups and start at different positions in parallel. Then, Gaussian Process Regression (GPR)-based pheromone update method makes the algorithm more efficient. While the proposed MPACO algorithm is more efficient than the existing ACO algorithm, it is limited in a network with topological changes. In order to overcome the issue, the MPACO algorithm is modified to the Convolution MPACO (CMPACO) algorithm. The proposed algorithm uses the pheromone convolution method using a discrete Gaussian distribution. The proposed pheromone updating method enables the generation of a more efficient network path with comparatively less influence from topological network changes. In order to show the effectiveness of CMPACO, numerical networks considering static and dynamic conditions are tested and compared. The proposed CMPACO algorithm is considered a new and efficient parallel metaheuristic method to consider a complex network with topological changes.

Funder

the National Research Foundation of Korea (NRF) funded by the Ministry of Education, S. Korea

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3