Model-Based Evaluation of Hydroelectric Dam’s Impact on the Seasonal Variabilities of POC in Coastal Ocean: A Case Study of Three Gorges Project

Author:

Chen ,Liu ,Xu ,Wang

Abstract

Particulate organic carbon (POC) plays an important role in the global carbon cycle. The POC in the Changjiang Estuary and adjacent coastal region of the East China Sea (ECS) is dominated by riverine input and marine production and is significantly influenced by the three gorges project (TGP). A coupled physical–biogeochemical model was used to evaluate TGP’s impact on POC. The results demonstrate that TGP regulates the area influenced by diluted water and POC through direct river and sediment discharge and affects the ecosystem. From the early to later TGP construction periods, the surface region with high-POC concentration (>40 μmol L−1) decreases by 20.5% in area and 11.5% in concentration. Meanwhile, POC in the whole water column decreases from 19.5 to 17.8 μmol L−1. By contrast, the concentrations of chlorophyll-a (Chl-a) and related nutrients increase. A three end-member mixing model based on quasi-conservative temperature and salinity is used to quantify relative contributions of different water sources to POC in our research area. We also estimate the biological POC production by the difference between the physical-biogeochemical model predicted POC and three end-member model mixing POC. The result demonstrate that under the regulation of TGP in the later period, the decrease of sediment load increases water transparency, which favors photosynthesis and oceanic biological produced POC. In addition, over 70% of the areas have C/Chl-a > 200 and high C/N ratios, which are circumstantial evidences that organic detritus and terrestrial input sources still dominate in the Changjiang Estuary and adjacent coastal ECS but are influenced by TGP’s regulation.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3