Harmful Fouling Communities on Fish Farms in the SW Mediterranean Sea: Composition, Growth and Reproductive Periods

Author:

Bosch-Belmar ,Escurriola ,Milisenda ,Fuentes ,Piraino

Abstract

Biological fouling organisms on fish cages represent a major issue and costly factor in marine finfish aquaculture. Cnidarians have been identified as one of the most problematical groups, contributing significantly to the occlusion and structural stress of the cage nets, but also dramatically affecting farmed species health in aquaculture facilities worldwide. Recently, significant relationships were established in different Spanish aquaculture facilities between hydrozoans and juvenile fish affected by gill injuries and mortality episodes. Community composition, growth rate and reproductive potential of biofouling were monitored on fish cages over two seasonal periods of fry cages farming, located in southern Spain (SW Alboran Sea), with a special focus on cnidarians. Biomass and community composition of biofouling changed with time and between studied periods, with a marked seasonality in colonization periods and taxonomic composition, particularly for the colonial hydrozoans. The hydroids Ectopleura larynx and Pennaria disticha were found at the highest densities. P. disticha was responsible for major biomass contribution to total hydroid biomass with the fastest growth rates. In addition, actinulae larvae of E. larynx were identified in zooplankton samples at high densities especially during periods of fry introduction in sea cages (when fish are highly vulnerable). These results corroborate evidence of the detrimental influence of fouling cnidarians in Mediterranean finfish aquaculture due to a direct harmful impact on fish health. Investigations on population dynamics, reproductive biology and envenomation potential of fouling hydrozoans should be regarded as key component of best monitoring practices to ensure good farmed fish welfare, maximization of aquaculture production and overall marine spatial planning.

Funder

Horizon 2020

FP7 Environment

ENPI CBC MED

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3