Author:
Zhang Hui,Wang Nemin,Zheng Shanshan,Chen Min,Ma Xiangqing,Wu Pengfei
Abstract
Studying the effects of different concentrations of ethephon on morphological and physiological changes in the roots of Chinese fir (Cunninghamia lanceolata Lamb. Hook.) seedlings under P deficiency can reveal the internal adaptive mechanisms of these plants under nutrient stress. Herein, we investigated the effects of different ethephon and cobalt chloride concentrations under normal P supply and P deficiency. A significant effect (p < 0.05) of exogenous additive application was observed on the development of Chinese fir root length, surface area, and volume. These root development indices showed maximum values when the ethephon concentration was 0.01 g kg−1 under normal P supply and P deficiency, and they were significantly different from those under 0.04 g kg−1 ethephon treatment. Similarly, the indices showed maximum values when CoCl2 concentration was 0.01 g kg−1 under P deficiency and was significantly different (p < 0.01) from those under 0.2 g kg−1 CoCl2 treatment. Under normal P supply, an increase in ethephon concentration caused superoxide dismutase (SOD; E.C. 1.15.1.1) activity to decrease and peroxidase (POD; E.C. 1.11.1.X) activity to increase gradually. Conversely, CoCl2 addition (0.01 g kg−1) promoted SOD and POD activities under P deficiency. There were no significant differences (p > 0.05) in malondialdehyde content of seedlings among ethephon or CoCl2 treatments. In conclusion, ethylene plays a significant role in adaptative mechanisms underlying stress resistance in plants, prompting them to respond to P starvation and improving seedlings’ tolerance to P-deficient conditions.
Funder
Key Program of Natural Science of Fujian Province, China
National Natural Science Foundation of China
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献