Ablation of Endothelial TRPV4 Channels Alters the Dynamic Ca2+ Signaling Profile in Mouse Carotid Arteries

Author:

McFarland Stuart J.,Weber David S.,Choi Chung-sik,Lin Mike T.,Taylor Mark S.

Abstract

Transient receptor potential vanilloid 4 channels (TRPV4) are pivotal regulators of vascular homeostasis. Altered TRPV4 signaling has recently been implicated in various cardiovascular diseases, including hypertension and atherosclerosis. These versatile nonselective cation channels increase endothelial Ca2+ influx in response to various stimuli including shear stress and G protein-coupled receptor (GPCR) activation. Recent findings suggest TRPV4 channels produce localized Ca2+ transients at the endothelial cell plasma membrane that may allow targeted effector recruitment and promote large-scale Ca2+ events via release from internal stores (endoplasmic reticulum). However, the specific impact of TRPV4 channels on Ca2+ signaling in the intact arterial intima remains unknown. In the current study, we employ an endothelium-specific TRPV4 knockout mouse model (ecTRPV4−/−) to identify and characterize TRPV4-dependent endothelial Ca2+ dynamics. We find that carotid arteries from both ecTRPV4−/− and WT mice exhibit a range of basal and acetylcholine (ACh)-induced Ca2+ dynamics, similar in net frequency. Analysis of discrete Ca2+ event parameters (amplitude, duration, and spread) and event composite values reveals that while ecTRPV4−/− artery endothelium predominantly produces large Ca2+ events comparable to and in excess of those produced by WT endothelium, they are deficient in a particular population of small events, under both basal and ACh-stimulated conditions. These findings support the concept that TRPV4 channels are responsible for generating a distinct population of focal Ca2+ transients in the intact arterial endothelium, likely underlying their essential role in vascular homeostasis.

Funder

National Institutes of Health

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3