Retinoprotection by BGP-15, a Hydroximic Acid Derivative, in a Type II Diabetic Rat Model Compared to Glibenclamide, Metformin, and Pioglitazone

Author:

Wachal Zita,Bombicz Mariann,Priksz Dániel,Hegedűs Csaba,Kovács Diána,Szabó Adrienn Mónika,Kiss RitaORCID,Németh József,Juhász Béla,Szilvássy Zoltán,Varga Balázs

Abstract

High blood glucose and the consequential ischemia-reperfusion (I/R) injury damage vessels of the retina, deteriorating its function, which can be clearly visualized by electroretinography (ERG). The aim of the present study was to evaluate the possible retinoprotective effects of systemic BGP-15, an emerging drug candidate, in an insulin resistant animal model, the Goto-Kakizaki rat, and compare these results with well-known anti-diabetics such as glibenclamide, metformin, and pioglitazone, which even led to some novel conclusions about these well-known agents. Experiments were carried out on diseased animal model (Goto-Kakizaki rats). The used methods include weight measurement, glucose-related measurements—like fasting blood sugar analysis, oral glucose tolerance test, hyperinsulinemic euglycemic glucose clamp (HEGC), and calculations of different indices from HEGC results—electroretinography and Western Blot. Beside its apparent insulin sensitization, BGP-15 was also able to counteract the retina-damaging effect of Type II diabetes comparable to the aforementioned anti-diabetics. The mechanism of retinoprotective action may include sirtuin 1 (SIRT1) and matrix metalloproteinase 9 (MMP9) enzymes, as BGP-15 was able to elevate SIRT1 and decrease MMP9 expression in the eye. Based on our results, this emerging hydroximic acid derivative might be a future target of pharmacological developments as a potential drug against the harmful consequences of diabetes, such as diabetic retinopathy.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3