Random Walk Approximation for Stochastic Processes on Graphs

Author:

Polizzi Stefano1ORCID,Marzi Tommaso1ORCID,Matteuzzi Tommaso2,Castellani Gastone3ORCID,Bazzani Armando1ORCID

Affiliation:

1. Department of Physics and Astronomy A. Righi, University of Bologna, 40127 Bologna, Italy

2. Department of Physics and Astronomy, University of Florence, 50019 Sesto Fiorentino, Italy

3. Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40138 Bologna, Italy

Abstract

We introduce the Random Walk Approximation (RWA), a new method to approximate the stationary solution of master equations describing stochastic processes taking place on graphs. Our approximation can be used for all processes governed by non-linear master equations without long-range interactions and with a conserved number of entities, which are typical in biological systems, such as gene regulatory or chemical reaction networks, where no exact solution exists. For linear systems, the RWA becomes the exact result obtained from the maximum entropy principle. The RWA allows having a simple analytical, even though approximated, form of the solution, which is global and easier to deal with than the standard System Size Expansion (SSE). Here, we give some theoretically sufficient conditions for the validity of the RWA and estimate the order of error calculated by the approximation with respect to the number of particles. We compare RWA with SSE for two examples, a toy model and the more realistic dual phosphorylation cycle, governed by the same underlying process. Both approximations are compared with the exact integration of the master equation, showing for the RWA good performances of the same order or better than the SSE, even in regions where sufficient conditions are not met.

Funder

IMI-EU HARMONY

EU Horizon 2020 programme: GenoMed4All

AIRC Foundation (Associazione Italiana per la Ricerca contro il Cancro), Milan, Italy

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3