Topology Optimization Method of a Cavity Receiver and Built-In Net-Based Flow Channels for a Solar Parabolic Dish Collector

Author:

Liu Jun1ORCID,Li Renfu1,Chen Yuxuan2,Zheng Jianguo1,Wang Kun3ORCID

Affiliation:

1. School of Aerospace Engineering, Huazhong University of Science and Technology, Wuhan 430074, China

2. Wuhan Secondary Ship Design & Research Institute, Wuhan 430064, China

3. School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China

Abstract

The design of a thermal cavity receiver and the arrangement of the fluid flow layout within it are critical in the construction of solar parabolic dish collectors, involving the prediction of the thermal–fluid physical field of the receiver and optimization design. However, the thermal–fluid analysis coupled with a heat loss model of the receiver is a non-linear and computationally intensive solving process that incurs high computational costs in the optimization procedure. To address this, we implement a net-based thermal–fluid model that incorporates heat loss analysis to describe the receiver’s flow and heat transfer processes, reducing computational costs. The physical field results of the net-based thermal–fluid model are compared with those of the numerical simulation, enabling us to verify the accuracy of the established thermal–fluid model. Additionally, based on the developed thermal–fluid model, a topology optimization method that employs a genetic algorithm (GA) is developed to design the cavity receiver and its built-in net-based flow channels. Using the established optimization method, single-objective and multi-objective optimization experiments are conducted under inhomogeneous heat flux conditions, with objectives including maximizing temperature uniformity and thermal efficiency, as well as minimizing the pressure drop. The results reveal varying topological characteristics for different optimization objectives. In comparison with the reference design (spiral channel) under the same conditions, the multi-objective optimization results exhibit superior comprehensive performance.

Funder

National Key R&D Program of China

Publisher

MDPI AG

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3