Abstract
In the present work, ternary mixtures of Acetaminophen, Ascorbic acid and Uric acid were resolved using the Electronic tongue (ET) principle and Cyclic voltammetry (CV) technique. The screen-printed integrated electrode array having differentiated response for the three oxidizable compounds was formed by Graphite, Prussian blue (PB), Cobalt (II) phthalocyanine (CoPc) and Copper oxide (II) (CuO) ink-modified carbon electrodes. A set of samples, ranging from 0 to 500 µmol·L−1, was prepared, using a tilted (33) factorial design in order to build the quantitative response model. Subsequently, the model performance was evaluated with an external subset of samples defined randomly along the experimental domain. Partial Least Squares Regression (PLS) was employed to construct the quantitative model. Finally, the model successfully predicted the concentration of the three compounds with a normalized root mean square error (NRMSE) of 1.00 and 0.99 for the training and test subsets, respectively, and R2 ≥ 0.762 for the obtained vs. expected comparison graphs. In this way, a screen-printed integrated electrode platform can be successfully used for voltammetric ET applications.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献