Hydrothermal Synthesis of ZnO Superstructures with Controlled Morphology via Temperature and pH Optimization

Author:

Ejsmont Aleksander1ORCID,Goscianska Joanna1ORCID

Affiliation:

1. Faculty of Chemistry, Department of Chemical Technology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland

Abstract

Zinc oxide, as a widely used material in optics, electronics, and medicine, requires a complete overview of different conditions for facile and easily reproducible syntheses. Two types of optimization of ZnO hydrothermal preparation from zinc acetate and sodium hydroxide solution are presented, which allowed for obtaining miscellaneous morphologies of materials. The first was a temperature-controlled synthesis from 100 to 200 °C, using citric acid as a capping agent. The formation of hexagonal rods at the lowest temperature was evidenced, which agglomerated to flower-like structures at 110 and 120 °C. It was followed by transformation to flake-like roses at 160 °C, up to disordered structures composed of nanosized plates (>180 °C). The transformations were generated through a temperature change, which had an impact on the diffusion effect of hydroxide and citrate complexes. The second optimization was the hydrothermal synthesis free of organic additives and it included only a pH variation from 7.5 to 13.5. It was found that by utilizing a slow-dropping process and varying amounts of NaOH solutions, it is possible to obtain well-formed hexagonal pellets at pH 8.0–8.5. Strongly basic conditions of pH 11.0 and 13.5 impeded superstructure formations, giving small elongated particles of ZnO. All samples were characterized by high phase purity and crystallinity, with a specific surface area of 18–37 m2/g, whereas particle size distribution indicated a predominance of small particles (<1 μm).

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3