Phase Transformation during the Selective Dissolution of a Cu85Pd15 Alloy: Nucleation Kinetics and Contribution to Electrocatalytic Activity

Author:

Vdovenkov Frol1,Bedova Eugenia1,Kozaderov Oleg1ORCID

Affiliation:

1. Department of Physical Chemistry, Faculty of Chemistry, Voronezh State University, Voronezh 394018, Russia

Abstract

This study determined the critical parameters for the morphological development of the electrode surface (the critical potential and the critical charge) during anodic selective dissolution of a Cu–Pd alloy with a volume concentration of 15 at.% palladium. When the critical values were exceeded, a phase transition occurred with the formation of palladium’s own phase. Chronoamperometry aided in the determination of the partial rates of copper ionization and phase transformation of palladium under overcritical selective dissolution conditions. The study determined that the formation of a new palladium phase is controlled by a surface diffusion of the ad-atom to the growing three-dimensional nucleus under instantaneous activation of the nucleation centres. We also identified the role of this process in the formation of the electrocatalytic activity of the anodically modified alloy during electro-oxidation of formic acid. This study demonstrated that HCOOH is only oxidated at a relatively high rate on the surface of the Cu85Pd15 alloy, which is subjected to selective dissolution under overcritical conditions. This can be explained by the fact that during selective dissolution of the alloy, a pure palladium phase is formed on its highly developed surface which has prominent catalytic activity towards the electro-oxidation of formic acid. The rate of electro-oxidation of HCOOH on the surface of the anodically modified alloy increased with the growth of the potential and the charge of selective dissolution, which can be used to obtain an electrode palladium electrocatalyst with a set level of electrocatalytic activity towards the anodic oxidation of formic acid.

Funder

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3