Affiliation:
1. Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang Province, Hangzhou 310021, China
2. Jiangsu Taihu Area Institute of Agricultural Sciences, Suzhou 215105, China
Abstract
Cereals and their derivative products such as starch and cyclodextrin are significant natural materials for sustainable textile processing (e.g., sizing, dispersing, etc.). However, the contamination of cereals with polychlorinated biphenyls (PCBs) is often neglected, which has led to increasing concerns due to the adverse effects on end users. Therefore, monitoring PCBs in cereals is of great importance in preventing health risks. However, high starch, protein, and fat contents make cereals a complicated matrix and can challenge the analysis of PCBs in cereals. This work describes a facile and rapid strategy for quantifying 18 PCBs in cereals that included corn, wheat, and rice through dispersive solid-phase extraction and gas chromatography with mass spectrometry. Importantly, this was the first time that carboxyl-modified, multi-walled carbon nanotubes were incorporated in the detection of PCBs in cereals. The influences of several parameters on the extraction and clean-up efficiency were investigated; these included the type and volume of extraction solvent, sonication time, and the type and dosage of the adsorbent. The matrix effects on quantification were also evaluated. This approach exhibited a better clean-up performance. All the analytes showed weak matrix effects, and thus a solvent standard plot could be prepared for their quantification. Spiking experiments in the selected matrices at three concentration levels from 0.5 to 10 μg/kg resulted in satisfactory recoveries that ranged from 79.2% to 110.5% with relative standard deviations (RSDs; n = 6) less than 10.3%. The limits of detection (LODs) and quantification (LOQs) ranged from 0.04 to 0.1 μg/kg and 0.1 to 0.4 μg/kg, respectively. The practical application of this method was investigated by analyzing actual cereal samples, which demonstrated that the proposed approach was a facile and efficient strategy for PCB determination and provided a reference for the safety evaluation of sustainable textiles. The method also could be generalized to other troublesome samples for testing of multiple PCBs.
Funder
Opening Foundation of the Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang Province
Subject
General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献