A Facile and Rapid Strategy for Quantifying PCBs in Cereals Based on Dispersive Solid-Phase Extraction and Gas Chromatography–Mass Spectrometry: A Reference for Safety Concerns in Sustainable Textiles

Author:

Liu Tengfei12,Song Ying2,Wang Xiangyun1,Shi Linlin2,Dong Minghui2

Affiliation:

1. Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang Province, Hangzhou 310021, China

2. Jiangsu Taihu Area Institute of Agricultural Sciences, Suzhou 215105, China

Abstract

Cereals and their derivative products such as starch and cyclodextrin are significant natural materials for sustainable textile processing (e.g., sizing, dispersing, etc.). However, the contamination of cereals with polychlorinated biphenyls (PCBs) is often neglected, which has led to increasing concerns due to the adverse effects on end users. Therefore, monitoring PCBs in cereals is of great importance in preventing health risks. However, high starch, protein, and fat contents make cereals a complicated matrix and can challenge the analysis of PCBs in cereals. This work describes a facile and rapid strategy for quantifying 18 PCBs in cereals that included corn, wheat, and rice through dispersive solid-phase extraction and gas chromatography with mass spectrometry. Importantly, this was the first time that carboxyl-modified, multi-walled carbon nanotubes were incorporated in the detection of PCBs in cereals. The influences of several parameters on the extraction and clean-up efficiency were investigated; these included the type and volume of extraction solvent, sonication time, and the type and dosage of the adsorbent. The matrix effects on quantification were also evaluated. This approach exhibited a better clean-up performance. All the analytes showed weak matrix effects, and thus a solvent standard plot could be prepared for their quantification. Spiking experiments in the selected matrices at three concentration levels from 0.5 to 10 μg/kg resulted in satisfactory recoveries that ranged from 79.2% to 110.5% with relative standard deviations (RSDs; n = 6) less than 10.3%. The limits of detection (LODs) and quantification (LOQs) ranged from 0.04 to 0.1 μg/kg and 0.1 to 0.4 μg/kg, respectively. The practical application of this method was investigated by analyzing actual cereal samples, which demonstrated that the proposed approach was a facile and efficient strategy for PCB determination and provided a reference for the safety evaluation of sustainable textiles. The method also could be generalized to other troublesome samples for testing of multiple PCBs.

Funder

Opening Foundation of the Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang Province

Publisher

MDPI AG

Subject

General Materials Science

Reference65 articles.

1. Cereals: Functional constituents and its health benefits;Baniwal;Pharma Innov. J.,2021

2. Food and Agriculture Organization of the United Nations (2022, July 10). World Food Situation, FAO Cereal Supply and Demand Brief. Available online: http://www.fao.org/worldfoodsituation/csdb/en/.

3. Amphipathic starch with phosphate and octenylsuccinate substituents for strong adhesion to cotton in warp sizing;Bismark;Fiber. Polym.,2018

4. Modifications to improve the adhesion of crosslinked starch sizes to fiber substrates;Zhu;Text. Res. J.,2004

5. Effects of processing on the distribution of pirimiphos-methyl residues in milling fractions of durum wheat;Chaurand;J. Stored Prod. Res.,2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3