Impact of 1,8-Diiodooctane (DIO) Additive on the Active Layer Properties of Cu2ZnSnS4 Kesterite Thin Films Prepared by Electrochemical Deposition for Photovoltaic Applications

Author:

Mkawi Elmoiz Merghni12ORCID,Al-Hadeethi Yas1ORCID,Arkook Bassim1ORCID,Bekyarova Elena3

Affiliation:

1. Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia

2. Center of Nanotechnology, King Abdulaziz University, Jeddah 42806, Saudi Arabia

3. Department of Chemistry, University of California at Riverside, Riverside, CA 92521, USA

Abstract

Kesterite Cu2ZnSnS4 (CZTS) thin films using various 1,8-diiodooctane (DIO) polymer additive concentrations were fabricated by the electrochemical deposition method. The optical, electrical, morphological, and structural properties of the CZTS thin films synthesized using different concentrations of 5 mg/mL, 10 mg/mL, 15 mg/mL, and 20 mg/mL were investigated using different techniques. Cyclic voltammetry exhibited three cathodic peaks at −0.15 V, −0.54 V, and −0.73 V, corresponding to the reduction of Cu2+, Sn2+, Sn2+, and Zn2+ metal ions, respectively. The analysis of the X-ray diffraction (XRD) pattern indicated the formation of the pure kesterite crystal structure, and the Raman spectra showed pure CZTS with the A1 mode of vibration. Field emission scanning electron microscopy (FE-SEM) indicated that the films are well grown, with compact, crack-free, and uniform deposition and a grain size of approximately 4 µm. For sample DIO-20 mg/mL, the elemental composition of the CZTS thin film was modified to Cu:Zn:Sn: and S = 24.2:13.3:12.3:50.2, which indicates a zinc-rich and copper-poor composition. The X-ray photoelectron spectroscopy (XPS) results confirmed the existence of Cu, Sn, Zn, and S elements and revealed the element oxidation states. The electrochemical deposition synthesis increased the absorption of the CZTS film to more than 104 cm−1 with a band gap between 1.62 eV and 1.51 eV. Finally, the photovoltaic properties of glass/CZTS/CdS/n-ZnO/aluminum-doped zinc oxide (AZO)/Ag solar cells were investigated. The best-performing photovoltaic device, with a DIO concentration of 20 mg/mL, had a short-circuit current density of 16.44 mA/cm2, an open-circuit voltage of 0.465 V, and a fill factor of 64.3%, providing a conversion efficiency of 4.82%.

Funder

King Abdulaziz University

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3