Variation in Juvenile Long Bone Properties as a Function of Age: Mechanical and Compositional Characterization

Author:

Vázquez Sanz Claudia1,Victoria Rodríguez Ignacio1,Forriol Francisco1ORCID,Tejado Elena2ORCID,Lopez-Valdes Francisco J.1ORCID

Affiliation:

1. Instituto de Investigación Tecnológica (IIT), ICAI School of Engineering, Universidad Pontificia Comillas, 28015 Madrid, Spain

2. Departamento de Ciencia de Materiales-CIME, Universidad Politécnica de Madrid, 28015 Madrid, Spain

Abstract

Bone is a heterogeneous, hierarchical biocomposite material made of an organic matrix filled with a mineral component, which plays an important role in bone strength. Although the effect of the mineral/matrix ratio on the mechanical properties of bone during aging has been intensively investigated, the relationship between the mechanical properties and the chemical composition of bone with age requires additional research in juvenile individuals. In this study, bone coupons from bovine and ovine animal species were machined from cortical areas of long bones to quantify whether the variation in mechanical properties at different stages of development is related to the change in the composition of bone tissue. An energy-dispersive X-ray detector (EDX) attached to a scanning electron microscope (SEM) was used to perform a compositional analysis of the tissue. In addition, nanoindentation analyses were carried out to address how the elastic modulus changed with age. Nonparametric statistical analyses found significant differences (p < 0.05) in Ca content and elastic modulus between species, but no differences were found within each species with development. A multiple linear regression model found that the elastic modulus was significantly related to the decrease in P and C in the samples, to the animal species (larger in bovine), and development, although not linearly. This model also found an interaction between Ca and development that could explain the lack of significance of the relationship between the elastic modulus and development in the univariate models.

Funder

the 2018 ACM Research Grants

he SECOT 2021 Ayuda a Proyectos de Investigación en Cirugía Ortopédica y Traumatología

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3