The Impact of Electron Phonon Scattering, Finite Size and Lateral Electric Field on Transport Properties of Topological Insulators: A First Principles Quantum Transport Study

Author:

Akhoundi Elaheh12,Houssa Michel12ORCID,Afzalian Aryan1ORCID

Affiliation:

1. IMEC, B-3001 Leuven, Belgium

2. Department of Physics, KU Leuven, B-3001 Leuven, Belgium

Abstract

We study, using non-equilibrium Green’s function simulations combined with first-principles density functional theory, the edge-state transport in two-dimensional topological insulators. We explore the impact of electron–phonon coupling on carrier transport through the protected states of two widely known topological insulators with different bulk gaps, namely stanene and bismuthene. We observe that the transport in a topological insulator with a small bulk gap (such as stanene) can be heavily affected by electron–phonon scattering, as the bulk states broaden into the bulk gap. In bismuthene with a larger bulk gap, however, a significantly higher immunity to electron–phonon scattering is observed. To mitigate the negative effects of a small bulk gap, finite-size effects are studied in stanene ribbons. The bulk gap increases in ultra-narrow stanene ribbons, but the transport results revealed no improvement in the dissipative case, as the states in the enlarged bulk gaps aren’t sufficiently localized. To investigate an application, we also used topological insulator ribbons as a material for field-effect transistors with side gates imposing a lateral electric field. Our results demonstrate that the lateral electric field could offer another avenue to manipulate the edge states and even open a gap in stanene ribbons, leading to an ION/IOFF of 28 in the ballistic case. These results shed light on the opportunities and challenges in the design of topological insulator field-effect transistors.

Funder

Research Foundation–Flanders (FWO) and the Flemish Government

Publisher

MDPI AG

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3