Effect of APS Spraying Parameters on the Microstructure Formation of Fe3Al Intermetallics Coatings Using Mechanochemically Synthesized Nanocrystalline Fe-Al Powders

Author:

Senderowski Cezary1ORCID,Vigilianska Nataliia2ORCID,Burlachenko Oleksii2ORCID,Grishchenko Oleksandr2,Murashov Anatolii2,Stepanyuk Sergiy3

Affiliation:

1. Institute of Mechanics and Printing, Faculty of Mechanical and Industrial Engineering, Warsaw University of Technology, 02-524 Warsaw, Poland

2. Department of Protective Coatings, E.O. Paton Electric Welding Institute, 03680 Kiev, Ukraine

3. Department of Studies of Physical-Chemical Processes in Welding Arc, E.O. Paton Electric Welding Institute, 03680 Kiev, Ukraine

Abstract

The present paper presents a study of the behaviour of Fe3Al intermetallic powders particles based on 86Fe-14Al, 86Fe-14(Fe5Mg), and 60.8Fe-39.2(Ti37.5Al) compositions obtained by mechanochemical synthesis at successive stages of the plasma spraying process: during transfer in the volume of the gas stream and deformation at the moment of impact on the substrate. The effect of the change in current on the size of powder particles during their transfer through the high-temperature stream and the degree of particle deformation upon impact with the substrate was determined. It was found that during transfer through the plasma jet, there was an increase in the average size of sputtering products by two–three times compared to the initial effects of mechanochemical synthesis due to the coagulation of some particles. In this case, an increase in current from 400 to 500 A led to a growth in average particle size by 14–47% due to the partial evaporation of fine particles with an increase in their heating degree. An increase in current also led to a 5–10% growth in particle deformation degree upon impact on the substrate due to the rising temperature and velocity of the plasma jet. Based on the research, the parameters of plasma spraying of mechanically synthesized Fe3Al intermetallic-based powders were determined, at which dense coatings with a thin-lamellar structure were formed.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3