Preliminary Observations from the China Fengyun-4A Lightning Mapping Imager and Its Optical Radiation Characteristics

Author:

Hui Wen,Zhang WenjuanORCID,Lyu Weitao,Li PengfeiORCID

Abstract

The Fengyun-4A (FY-4A) Lightning Mapping Imager (LMI) is the first satellite-borne lightning imager developed in China, which can detect lightning over China and its neighboring regions based on a geostationary satellite platform. In this study, the spatial distribution and temporal variation characteristics of lightning activity over China and its neighboring regions were analyzed in detail based on 2018 LMI observations. The observation characteristics of the LMI were revealed through a comparison with the Tropical Rainfall Measuring Mission (TRMM)-Lightning Imaging Sensor (LIS) and World Wide Lightning Location Network (WWLLN) observations. Moreover, the optical radiation characteristics of lightning signals detected by the LMI were examined. Factors that may affect LMI detection were discussed by analyzing the differences in optical radiation characteristics between LMI and LIS flashes. The results are as follows. Spatially, the flash density distribution pattern detected by the LMI was similar to those detected by the LIS and WWLLN. High-flash density regions were mainly concentrated over Southeastern China and Northeastern India. Temporally, LMI flashes exhibited notable seasonal and diurnal variation characteristics. The LMI detected a concentrated lightning outbreak over Northeastern India in the premonsoon season and over Southeastern China in the monsoon season, which was consistent with LIS and WWLLN observations. LMI-observed diurnal peak flash rates occurred in the afternoon over most of the regions. There was a “stepwise” decrease in the LMI-observed optical radiance, footprint size, duration, and number of groups per flash, from the ocean to the coastal regions to the inland regions. LMI flashes exhibited higher optical radiance but lasted for shorter durations than LIS flashes. LMI observations are not only related to instrument performance but are also closely linked to onboard and ground data processing. In future, targeted improvements can be made to the data processing algorithm for the LMI to further enhance its detection capability.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3