Effects of the Long-Term Climate Change and Selective Discharge Schemes on the Thermal Stratification of a Large Deep Reservoir, Xin’anjiang Reservoir, China

Author:

Li Huiyun,Lan Jia,Qin Boqiang,Luo LiancongORCID,Jin Junliang,Zhu Guangwei,Wu Zhixu

Abstract

The effects of global warming and precipitation changes on water temperature and thermocline parameters, such as thermocline depth, thickness, and strength, were assessed. A catchment model, coupled with a reservoir thermal model with meteorological input calculated by a downscaled general circulation model (GCM) projection under three representative concentration pathways (RCPs), was applied to the Xin’anjiang Reservoir, located in southeast China. The results indicate that water temperature in each layer increased (decreased) with the rise (decline) in air temperature, especially the surface water temperature. There was a significant negative (positive) correlation between thermocline depth (strength) and air temperature during the period of stratification weakness. The most sensitive phenomenon of water temperature-to-precipitation changes occurred in the middle layer (depth = 30 m). Additionally, the thermocline depth and thickness increased with decreases in hydraulic residence time, which were caused by precipitation increases. According to the simulation experiments driven by RCP outputs, mean water temperature in each water layer in the future (2096–2100) has a strong response to increases in air temperature, which is projected to increase by 0.11–0.62 °C for RCP2.6, 0.76–1.19 °C for RCP4.5, and 1.50–2.35 °C for RCP8.5, compared to the baseline (2012–2016). However, mean water temperature in each water layer from 2096 to 2100 underwent a slight decrease caused by precipitation changes, with a 0.03–0.25 °C decrease for RCP2.6, 0.07–0.40 °C for RCP4.5, and 0.04–0.29 °C for RCP8.5, compared to 2012–2016. The mean thermocline depth in the future (2096–2100) will be significantly decreased, while the mean thermocline thickness will be slightly increased. Over a multiyear timescale, the impacts of air temperature changes are stronger than those induced by precipitation variations. However, the effects of hydraulic residence time changes caused by precipitation changes (especially rainstorm) should be considered in the management of deep reservoirs.

Funder

National Natural Science Foundation of China

Yunnan University

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3