Development of a Runoff Pollution Empirical Model and Pollution Machine Learning Models of the Paddy Field in the Taihu Lake Basin Based on the Paddy In Situ Observation Method

Author:

Xu Yunqiang,Su BaolinORCID,Wang Hongqi

Abstract

Agricultural non-point source (NPS) pollution has become a prominent problem for China’s water quality. Paddy fields pose a high risk of pollution to surrounding water bodies. The paddy in situ observation method (PIOM) can calculate the runoff pollution load of paddy fields in situ without changing the original runoff characteristics and agricultural water management measures. In this study, we carried out multisite field experiments during the rice growing period in the Taihu Lake basin and calculated the runoff pollution loads. Then, we developed a runoff pollution empirical model (RPEM) and runoff pollution machine learning models of paddy fields. Based on the PIOM, the average runoff volume was 342.1 mm, and the runoff pollution loads mainly occurred in the early-stage seedling and tillering stages. The mean TN, NH4+-N, TP and CODMn loads of paddy fields were 10.28, 3.35, 1.17 and 23.49 kg·ha−1, respectively. The mean N and P fertilizer loss rates were 4.09 and 1.95%, respectively. The RPEM mainly included the runoff model and surface water concentration model of paddy fields, the performance of which was validated based on the PIOM. The irrigation and runoff volumes of Zhoutie paddy (ZT) and Heqiao paddy (HQ) analyzed by RPEM and PIOM had an absolute difference of 1.2~3.1%. With the exception of the difference in CODMn loads of ZT, the absolute differences in TN, NH4+-N, TP and CODMn loads of ZT and HQ measured by two methods were less than 20%. This result illustrates the accuracy and feasibility of the RPEM for analysis of the water balance and runoff pollution loads of paddy fields. Based on 114 field runoff pollution datasets, RF provided the best machine learning model for TN, NH4+-N and TP, and SVM was the best model for CODMn. The training set R2 values of the best models for TN, NH4+-N and CODMn were above 0.8, and the testing set R2 values of the best models were above 0.7. The runoff pollution RF and SVM models can support the calculation and quantitative management of paddy field pollution load. This study provides a theoretical basis and technical support for the quantification of runoff pollution load and the formulation of pollution control measures in the Taihu Lake basin.

Funder

Major Science and Technology Program for Water Pollution Control and Treatment

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3