Edge-Cloud Collaborative Defense against Backdoor Attacks in Federated Learning

Author:

Yang Jie,Zheng Jun,Wang Haochen,Li Jiaxing,Sun HaipengORCID,Han Weifeng,Jiang Nan,Tan Yu-AnORCID

Abstract

Federated learning has a distributed collaborative training mode, widely used in IoT scenarios of edge computing intelligent services. However, federated learning is vulnerable to malicious attacks, mainly backdoor attacks. Once an edge node implements a backdoor attack, the embedded backdoor mode will rapidly expand to all relevant edge nodes, which poses a considerable challenge to security-sensitive edge computing intelligent services. In the traditional edge collaborative backdoor defense method, only the cloud server is trusted by default. However, edge computing intelligent services have limited bandwidth and unstable network connections, which make it impossible for edge devices to retrain their models or update the global model. Therefore, it is crucial to detect whether the data of edge nodes are polluted in time. This paper proposes a layered defense framework for edge-computing intelligent services. At the edge, we combine the gradient rising strategy and attention self-distillation mechanism to maximize the correlation between edge device data and edge object categories and train a clean model as much as possible. On the server side, we first implement a two-layer backdoor detection mechanism to eliminate backdoor updates and use the attention self-distillation mechanism to restore the model performance. Our results show that the two-stage defense mode is more suitable for the security protection of edge computing intelligent services. It can not only weaken the effectiveness of the backdoor at the edge end but also conduct this defense at the server end, making the model more secure. The precision of our model on the main task is almost the same as that of the clean model.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3