Gully Erosion Development in Drainage Basins: A New Morphometric Approach

Author:

Ciccolini Ugo1ORCID,Bufalini Margherita2ORCID,Materazzi Marco2ORCID,Dramis Francesco3

Affiliation:

1. Corso Duca Luigi 11/a, 01035 Gallese, VT, Italy

2. School of Science and Technology, Geology Division, University of Camerino, Via Gentile III da Varano 7, 62032 Camerino, MC, Italy

3. Department of Sciences, University of Roma Tre, L.go San Leonardo Murialdo 1, 00146 Rome, RM, Italy

Abstract

The formation and evolution of management gullies is a highly intense process of soil erosion often overlooked in policies and river basin strategies. Despite the worldwide spread of the phenomenon, our ability to assess and simulate gullying and its impacts remains limited; therefore, predicting the development and evolution of these river reaches represents a significant challenge, especially in areas where the loss of productive soil or the hazards linked to landslides or floods represent critical factors. Our study demonstrates how an exclusively morphometric approach, based on the construction of the hypsometric curve and applied to small hydrographic basins that are lithologically homogeneous and hierarchized according to the Strahler classification method, is able to predict the triggering height of the gullies; this height corresponds to the mean elevation of the basin and the inflection point of the hypsometric curve itself, confirming the hypothesis that this point coincides with the point at which a sudden change in surface runoff energy occurs, The study also shows that the portion of the basin necessary to trigger these intense erosive processes is always within a small range, regardless of the size and morphology (slope) of the basin itself. Such an approach, which is quick and relatively easy to apply, could help develop hydrogeological hazard mitigation practices in land planning projects.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3