Spatio-Temporal Dynamics Coupling between Land Use/Cover Change and Water Quality in Dongjiang Lake Watershed Using Satellite Remote Sensing

Author:

Song Yang12,Li Xiaoming1,Feng Lanbo3,Zhang Gui3

Affiliation:

1. College of Environmental Science and Engineering, Hunan University, Changsha 410082, China

2. ASEM Water Resources Research and Development Center, Changsha 410031, China

3. College of Forestry, Central South University of Forestry and Technology, Changsha 410004, China

Abstract

With rapid social and economic development, land use/land cover change (LUCC) has intensified with serious impacts on water quality in the watershed. In this study, we took Dongjiang Lake watershed as the study area and obtained measured data on water quality parameters from the watershed’s water quality monitoring stations. Based on Landsat-5, Landsat-8, or Sentinel-2 remote sensing data for multiple periods per year between 1992 and 2022, the sensitive satellite bands or band combinations of each water quality parameter were determined. The Random Forest method was used to classify the land use types in the watershed into six categories, and the area proportion of each type was calculated. We established machine learning regression models and polynomial regression models with WQI as the dependent variable and the area proportion of each land use type as the independent variable. Accuracy test results showed that, among them, the quadratic cubic polynomial regression model with grassland, forest land, construction land, and unused land as its independent variables was the best model for coupling watershed water quality with LUCC. This study’s results provide a scientific basis for monitoring spatial and temporal changes in water quality caused by LUCC in the Dongjiang Lake watershed.

Funder

Key Research and Development Program of Hunan Province

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3