Characterization of Biochar from Beach-Cast Seaweed and Its Use for Amelioration of Acid Soils

Author:

Cárdenas-Aguiar Eliana12ORCID,Gascó Gabriel1ORCID,Lado Marcos2,Méndez Ana3ORCID,Paz-Ferreiro Jorge4ORCID,Paz-González Antonio2ORCID

Affiliation:

1. Department of Agricultural Production, Universidad Politécnica de Madrid, Ciudad Universitaria, 28040 Madrid, Spain

2. Centro Interdisciplinar de Química e Bioloxía CICA, As Carballeiras, s/n Campus de Elviña, University of Corunna, 15008 Corunna, Spain

3. Department of Geological and Mining Engineering, Universidad Politécnica de Madrid, 28040 Madrid, Spain

4. School of Engineering, RMIT University, Melbourne 3000, Australia

Abstract

Limited knowledge is available regarding biochar (BC) obtained from beach-cast seaweed, which needs to be characterized to better prospect its potential applications. Beach-cast seaweed BCs were produced at two temperatures (300 and 600 °C) and two residence times (1 and 3 h). First, an extensive characterization of feedstock and their derived BCs was performed. Then, an incubation experiment was conducted to investigate the potential of these BCs as ameliorants in two acidic soils, classified as Umbrisols. Proximate and elemental analyses suggested the presence of more stable C structures in BCs at 600 °C with a high C, fixed carbon (FC) and low H, O and volatile matter (VM); additionally, thermogravimetric graphics showed less weight loss. Some features from the raw material were present in biochars obtained at 300 °C but absent at 600 °C. Dissolved organic carbon was much lower in BCs pyrolyzed at 600 °C than at 300 °C, suggesting the higher aromaticity of the former, allowing more resistance to water extraction. The breakdown of proteinaceous soluble materials after pyrolysis was revealed by fluorescence. Residence time caused minor effects in biochar properties compared to temperature. The soil pH and macronutrient availability of the two studied soils increased after beach-cast seaweed biochar addition.

Funder

Unión Europea-NextGenerationEU

Ministerio de Universidades and Universidad Politécnica de Madrid

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3