Distribution and Variation of Soil Water and Salt before and after Autumn Irrigation

Author:

Zhang Yin12,Miao Qingfeng1ORCID,Li Ruiping1ORCID,Sun Minghai2,Yang Xinmin3,Wang Wei3,Huang Yongping4,Feng Weiying5ORCID

Affiliation:

1. College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China

2. Department of Water Conservancy and Civil Engineering, Hetao College, Bayannur 015000, China

3. Urat Sub-Center, Inner Mongolia Hetao Irrigation District Water Conservancy Development Centre, Bayannur 014400, China

4. Water Conservancy Research Institute of Bayannur City, Bayannur 015000, China

5. School of Materials Science and Engineering, Beihang University, Beijing 100191, China

Abstract

Autumn irrigation is a key measure for alleviating soil salinity and promoting sustainable agricultural development in the Hetao Irrigation district; however, only a part of farmland is irrigated in autumn during the non-growth period of crops, which leads to the redistribution of soil water and salt between autumn-irrigated land (AIL) and adjacent non-autumn-irrigated land (NAIL) after autumn irrigation. To explore the distribution and variation of soil water and salt in different positions of AIL and NAIL after local autumn irrigation and reveal the interaction range between AIL and NAIL, field experiments were carried out for two years in typical test areas. The results showed that compared with non-autumn irrigation, autumn irrigation improved the distribution uniformity of soil water and salt profiles in both horizontal and vertical directions; after autumn irrigation, the water content of the soil at the nearest sampling point to the boundary in the AIL increased the least, but the desalination rate was the greatest, while the water and salt contents of the soil within 45 m from the sampling points to the boundary in the NAIL both increased significantly. NAIL received the drainage of AIL and made the groundwater level after the rise in AIL fell quickly back, but unreasonable autumn irrigation caused the groundwater level of AIL to remain at a high level before freezing, exacerbating the risk of groundwater carrying salts to the surface soil during the freezing and thawing period, detrimental to the growth of crops in the next spring. The research results are of great significance to the rational use of farmland water resources and the improvement of soil salinization in cold and dry areas.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3