Weight Illusion Caused by Sinusoidal Vibration Correlates with Grip Force Adjustment

Author:

Kim Giryeon12,Okamoto Shogo12,Maruyama Hisataka3ORCID

Affiliation:

1. Department of Mechanical Systems Engineering, Nagoya University, Nagoya 464-8601, Japan

2. Department of Computer Science, Tokyo Metropolitan University, Tokyo 191-0065, Japan

3. Department of Micro-Nano Systems Engineering, Nagoya University, Nagoya 464-8601, Japan

Abstract

Our research team previously identified a weight illusion in which a lifted object feels heavy when it continuously presents a sinusoidal vibration to the fingertips. However, the mechanism underlying this illusion remains unknown. We thus hypothesized that the autonomous grip force adjustment against a vibrating object would be one of the factors underlying the weight illusion. The autonomous grip force adjustment increases the motor outputs of a human hand system, subsequently raising the sense of effort to keep holding the lifted object. The grip forces and perceived heaviness were evaluated using vibratory stimuli with five different frequencies (30 Hz, 60 Hz, 100 Hz, 200 Hz, and 300 Hz) and three different amplitudes (156 μm, 177 μm, and 203 μm). The results showed that the stimuli at lower frequencies or large amplitudes increased the grip forces more and felt heavier than the stimuli at higher frequencies or small amplitudes. Specifically, the 30 Hz stimuli felt the heaviest and increased the grip force the most. An increase in the grip force was positively correlated with the perceived heaviness. These results indicate that vibratory stimuli influence both the grip force and weight perception. Our findings can contribute to developing haptic displays to present virtual heaviness.

Funder

MEXT Kakenhi

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference48 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3