Accuracy of Three-Dimensional Printed Dental Models Based on Ethylene Di-Methacrylate-Stereolithography (SLA) vs. Digital Light Processing (DLP)

Author:

Vlasa Alexandru1ORCID,Bocanet Vlad I.2ORCID,Muntean Mircea H.2,Bud Anamaria1,Dragomir Bogdan Radu3,Rosu Sorana Nicoleta3,Lazar Luminita1ORCID,Bud Eugen1ORCID

Affiliation:

1. Faculty of Dental Medicine, University of Medicine and Pharmacy, Science and Technology George Emil Palade, 540139 Târgu-Mureș, Romania

2. Department of Industrial Engineering, Faculty of Industrial Engineering, Robotics and Production Management Machine Building, Technical University of Cluj-Napoca, 400144 Cluj-Napoca, Romania

3. Faculty of Dental Medicine, University of Medicine and Pharmacy Grigore T. Popa, 700115 Iași, Romania

Abstract

Additive manufacturing is a technology that has many uses across a variety of fields. Its usage spans many fields, including the fields of art, design, architecture, engineering and medicine, including dentistry. The study aims to evaluate and compare the accuracy of three-dimensional printed dental models based on ethylene di-methacrylate using the SLA and DLP techniques. For evaluation, a reference model containing 16 maxillary permanent molars was chosen. An ATOS Capsule 3D scanner was used to scan the reference model. Using a photo-cured liquid resin, eight three-dimensional printed models were obtained using the reference model as benchmark. Four of the models (A1–A4) were obtained using SLA printing technology and four models (B1–B4) were manufactured using DLP printing technology. A standard best fit method was used to pre-align the reference and the printed model surfaces. The height of the teeth, and the mesial–distal and buccal–lingual distances were analyzed. The assessment of the two manufacturing methods was achieved by using non-parametric tests to compare the mean ranks for the assessed features. The results show that models obtained through DLP had a higher precision but also a higher bias. Both methods still are within the required accuracy range for dental models.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference30 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3