Parametric Optimization and Numerical Analysis of GaAs Inspired Highly Efficient I-Shaped Metamaterial Solar Absorber Design for Visible and Infrared Regions

Author:

Alsharari Meshari1ORCID,Armghan Ammar1ORCID,Aliqab Khaled1ORCID

Affiliation:

1. Department of Electrical Engineering, College of Engineering, Jouf University, Sakaka 72388, Saudi Arabia

Abstract

Renewable energy demand is increasing as fossil fuels are limited and pollute the environment. The solar absorber is an efficient renewable energy source that converts solar radiation into heat energy. We have proposed a gallium arsenide-backed solar absorber design made with a metamaterial resonator and SiO2 substrate. The metamaterial resonator is investigated with thin wire metamaterial and I-shaped metamaterial designs. The I-shape metamaterial design outperforms the thin wire metamaterial design and gives 96% average absorption with a peak absorption of 99.95%. Structure optimization is applied in this research paper using parametric optimization. Nonlinear parametric optimization is used because of the nonlinear system results. The optimization method is used to optimize the design and improve the efficiency of the solar absorber. The gallium arsenide and silicon dioxide thicknesses are modified to see how they affect the absorption response of the solar absorber design. The optimized parameter values for SiO2 and GaAs thicknesses are 2500 nm and 1000 nm, respectively. The effect of the change in angles is also investigated in this research. The absorption is high for such a wide angle of incidence. The angle of 30° only shows a lower absorption of about 30–50%. The effect of the change in angles is also investigated in this research. The design results are verified by presenting the E-field results for different wavelengths. The optimized solar absorber design applies to renewable energy applications.

Funder

Deputyship for Research and Innovation, Ministry of Education in Saudi Arabia

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3